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ROTATING DISK WITH UNIFORM SUCTION IN 
STREAMING FLOW 
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SUMMARY 
We investigate the flow as it occurs above a single rotating disk when uniform suction is applied at  the disk 
surface. It has been demonstrated by others that a t  zero suction repeated branching of the solution occurs as 
the parameter s is varied, where s is the ratio of the angular velocity of the fluid at  infinity to  the angular 
velocity of the disk. We show multiplicity of solution also at  - 0.82 < a,< 1.15, where a is the suction 
parameter; for large absolute values of ct the solution fails to turn back on itself and we obtain only the von 
Karman solution. 

We then generalize the von Karman solution for flow above a single rotating disk with uniform suction to 
include non-axisymmetric solutions due to streaming at  infinity. These solutions are continuous in an 
arbitrary parameter, the streaming velocity at infinity; for zero value of this parameter the asymmetric flow 
degenerates into the classical von Karman flow. Thus the classical solution is never isolated when considered 
within the framework of the Navier-Stokes equations: there are asymmetric solutions in every neighbour- 
hood of the von Karman solution. 
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INTRODUCTION 

It  has been shown by von Karman’ that two assumptions, namely that the flow is axisymmetric 
and that the axial velocity is invariant over planes parallel to a rotating disk, enable reduction of 
the Navier-Stokes equations to a set of ordinary differential equations which describe flow over 
the rotating disk. These equations remain valid also when there is uniform suction or blowing 
through the disk, on account of the axial velocity being independent of the radial co-ordinate. This 
was first pointed out by Batchelor,’ and Stuart3 gave the first solution to the problem. For small 
values of the suction parameter a, where a J ( v u )  is the suction velocity and o represents disk 
rotation, Stuart employed the Adams-Bashforth method used earlier by Cochran4 for zero 
suction. For a > 1 the solution was expanded in inverse powers of a. 

The von Karman equations remain applicable even when the fluid at infinity is rotating in a rigid 
body mode. Solutions have been obtained for various values of s by Rogers and Lance’ and others. 
However, it appeared to be not possible to find solutions in the parameter range - 0.160 > s > 
- 1.4351. At s = - 1.4351 the solution of the equations was found to become singular by Weidman 
and Redekopp6, and Zandbergen and Dijkstra’ showed that branching occurs at s = - 0.16054. 
Lentini and Keller8 find that at least four families of solutions exist and conjecture existence of an 
infinite sequence of solutions. Suction, when it is applied, reduces the magnitude of both the radial 
and the azimuthal velocity components and promotes stability. Rogers and Lance’ investigated 
the problem of the fluid rotating at infinity at equal rate but in the opposite sense from the disk and 
found physically acceptable solutions for a 2  0.6. 
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All of the above studies employed the classical assumptions of von Karman. Recently, however, 
Berker’ considered the flow between corotating disks and established a one-parameter family of 
solutions. The only axisymmetric solution in this family is the rigid body motion, thus it is just this 
solution that would follow from von Karman’s assumptions. Following Berker, Parter and 
Rajagopal” re-examined the classical problem of flow between rotating disks. They proved the 
existence of a one-parameter family of solutions for flow between two disks rotating about a 
common axis, or about distinct axes. These flows were calculated by Lai, Rajagopal and Szeri” for 
various values of s, where s is now the ratio of disk rotational velocities. This work was extended by 
Lai, Rajagopal and Szeri” to flow in the semi-infinite interval above a single rotating disk. 

In the present paper we study asymmetric flows above a rotating disk when uniform suction is 
applied at the disk. These asymmetric flows are obtained by superposition of the axisymmetric von 
Karman swirling flow in the presence of suction and a pseudo-plane motion, the velocity field of 
which has Cartesian components (g(z),/(vw), - f(z),/(vo), O}. At infinity the velocity assumes the 
value of (0, - C,/(vo), 0} where C is an arbitrary constant. Hence, at s = 0 our generalized flow is 
obtainable by placing a rotating disk into a fluid that is streaming uniformly in the y < 0 direction 
with velocity CJ(vo). The functions g(z) and f(z) are defined by variable-coefficient linear ordinary 
differential equations, with coefficients depending on the von Karman solution {F(z), G(z), H(z)} 
and on the constant C. Whenever there exist solutions to the von Karman problem we can, in the 
light of the work of Parter and Rajagopal,” proceed with determining the functions {f(z), g(z)}. 
These functions are continuous in C; thus symmetric solutions of the von Karman problem are 
never isolated when considered within the scope of the full Navier-Stokes equations; there are 
asymmetric solutions in every neighbourhood of the von Karman solutions. 

The von Karman problem itself leads to a multiplicity of solutions. These solutions were already 
investigated at zero We demonstrate here repeated branching for non-zero suction; 
with a =  1 first branching occurs at s = - 0.257795 and second branching takes place in the 

~ neighbourhood of s = 0.0750. However, for a >  1.154 we were unable to find more than one 
solution to the von Karman flow. For this value of the suction parameter the solution fails to turn 
back on itself. For uniform blowing (negative suction) we demonstrate the first branch for a = - 1, 
- 2, - 3, - 4 and the second branch for a = - 0.6, - 0-76 and - 082. 

GOVERNING EQUATIONS 

In this study of flow above a rotating disk we employ cylindrical polar co-ordinates { X I ,  x2, x3}. 
The disk is located in x3 = 0. We further define a non-dimensional co-ordinate system { r ,  8, z} 
where 

r = ~,/(O/V); 8 = x2; z = x~,/(w/v). (1) 
The disk angular velocity is o, v is the kinematic viscosity and the angular velocity of the fluid as 
z+co is so. 

In an attempt to extend the von Karman solutions to include flows with uniform streaming in the 
y < 0 direction at infinity, we superpose a pseudo-plane velocity field with Cartesian components 
{g(z),/(vo), - f(z)(vo), 0} on the von Karman swirling flow. The required condition at infinity will 
be satisfied if g(z) + 0, f(z) -+ constant and s + 0 as z -+ co. 

We thus seek solutions of the non-dimensional Navier-Stokes equations in the form 

1 
r 

U(r, 8, Z) = F(z) + - [g(z)cos 8 - f(z)sin 81, 



ROTATING DISK WITH UNIFORM SUCTION 177 

1 
r 

6(r, 8, z) = G(z) - - [g(z)sin 8 + f(z)cos 81, (2b) 

W ( Z )  = H(z). (24  
Here we put {u, v, w} = x’o{U, 0, (l/r)w} for the velocity field. The overscore bar signifies a non- 
dimensional quantity. The condition of incompressibility, div v = 0, is identically satisfied by the 
velocity field v = {u, v, w} provided we allow for the relationship 

1 d H  
2 dz 

F(z) = - --. 

The boundary conditions on the velocity are satisfied 

=o, G = l  H = - E ,  - 
d H  
dz 

f = g = O  

and 

by specifying 

at z = 0, 

at z +  co. -=o, G = s  
d H  
dz 

f = C ,  g = o  

However, these conditions are not sufficient to determine the solution uniquely. It is also 
necessary to assume that both H’ and H“ vanish as z + a3.’ 

We make use of the work of Lentini and Keller’ here and require asymptotic conditions to be 
satisfied at some finite value ofz, say zm, in place of(5a). But to  expedite calculations, first transform 
the semi-infinite interval z 2 0 into the unit interval 0 < Z < 1, where 5 = z/z,. 

Substituting the velocity profile, written now in terms of the normalized co-ordinate Z, into the 
appropriate form of the non-dimensional Navier-Stokes equations we are led to the following 
system of ordinary differential equations:” 

( 6 4  

G” - z (G’H - GH’) = 0, (6b) 

( 7 4  

(7b) 
The first two of these equations (6)  do not contain either f(z) or g(z); they represent the 

axisymmetric swirling flow of von Karman. The remaining two equations (7) are linear and are the 
conditions under which the pseudo-plane velocity field {g(z).J(vo), - f(z)J(vo), 0} is compatible 
with the Navier-Stokes equations. 

The boundary conditions which accompany equations (6) and (7) are obtained from (4) and (5b) 
by transformation to 5: 

at 5 = 0: 

H“’ - Z, HH“ + 32, HI2 - 2z3,(G2 - s’) = 0, 

f”’ - Z, Hf”  - fz,(H’f’ - H”f) + z$(Gg)’ = 0, 
g’” - z Hg” - 1 2Z,(H’g’ - H ” g )  - zZ,(Cf)’ = 0. 

00 

H =  - a ,  H ’ = 0 ,  G = l ,  

f = g = O ;  

At Z= 1:  

f =c, g = o .  
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In place of employing conditions (5a) at Z = 1, we specify there the asymptotic conditions of 
Lentini and Keller:’ 

5 
[ G ,  - S] = 0, 

1 1 
-[H, +u(H,,s)]H‘(l)+,H”(l)-- 
Z m  Z m  4 H m  s) 

(9b) 
1 

b2(Hm’ ’)a(H,, s)H’(l) + [H, + a(H,, s)](G, - S) + - G ( l )  = 0. 
Z m S  Z m  

Here H, = H(l), G, = G(1), and 

These conditions guarantee bounded solutions of the non-linear problem on the semi-infinite 

We need one more condition each on f(z) and g(z). The requirement for absence of a shear layer 
interval z 2 0. 

at infinity leads to 

f ’=g’=O as z+co. (1 1)  

Clearly, other choices are possible. 
It follows from the transformation z + Z that (dfldz) = (df/dZ)/z,; thus if z, + co and d f /dZ < k 

for some finite k, d f /dz --+ 0 at any z.  Therefore, the transformation Z = z/z, is acceptable only if 
there is rapid convergence of the solution as z, is increased from unity. That this is the case was 
demonstrated elsewhere.” 

NUMERICAL METHOD 

We seek solutions to equations (6), (7), (8), (9) and (1  1) in the weak form 
N 

{G, H, f ,  g} = 1 {Gj, Hj, f j ,  gj}Bj(Z), 
j =  1 

where {Bj(Z)}Y= , is a set of cubic B-splines defined on the partition 

7 c : o = Z , < Z 2 < ~ ~ ~ < z , < Z ~ + , = 1 ,  

with a knot sequence {tk}r2f given by 

z1 = t ,  = t ,  = t, = t4, 

52 = t 5 ,  

Z[ = tN, 

z l + l  = t N + l  = t N + Z = t N + 3 = t N + 4 *  

Here N is the dimension of the approximating subspace, calculated from 

and vi = 3, 2 < i < I ,  is the smoothness index at the internal  breakpoint^.'^ 
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Satisfaction of the boundary conditions (8), (9a) and ( 1  1) yields 

and the asymptotic conditions (9a, b) take the form 

and 

1 
b(HN,  S) = - [ H i  + 4 ~ ~ ) ’ ”  - Hi]”’. 

J2 
Substituting (12) into equations (6)  and (7), multiplying through by the test sets 

T~ = {Bk(,f): 

T~ = {Bm(,T): 
T~ = {B,(,f): 

3 d id  N - l}, 
T~ = {B,(Z): 2 dj < N - l}, 

(17) 
2 < k < N - 21, 
2 < 1 d N - 2}, 

and integrating from Z = 0 to Z = 1 yields the following four sets of algebraic equations: 

- 
The spline inner products ,T$), . . . , Z$j”k’ have the definitions 

1 
Z(!” -Jk = By)(?)Bf)(,T)dZ, 

0 

ZIT2 = Bi“’(Z)B~b’(,f)B~’(zd~, 
- s: 



180 A. Z. SZERI, C. Y. LA1 A N D  A. A. KAYHAN 

a < b < c ,  
p = a + b + c +  1 ( i fb#0)+2(ifa#O).  

The first solution of the non-linear system (15), (18) is calculated on a uniform partition. This 
solution is then improved by employing the adaptive mesh selection strategy of de B ~ o r . ' ~ , ' ~  The 
idea behind this strategy is to concentrate the breakpoints in locations of expected large variations 
in the solution H(Z). To this end the solution H(5) obtained on a uniform partition is represented by 
the cubic spline interpolant 

To evaluate the Ck,n we employ a subroutine by de B00r . l~  Calculation of H(5)  is based on the Ck," 
and we choose 

(5, - Z,) ' i 21AH3/21 

Here 
Hi+1j2 = H ( z ) ( ~ - ~ ) ,  on [Zi,Zi+,], 

AHi- ljz  = Hi+ l j 2  - Hi- 1 / 2 .  

The new partition is defined then with the aid of a piecewise linear function ic, where 

ic(2) = [h(~)]"~ds; ic(1) = sb 
The iteration n = 1,2,3,. . . is described by 

where I (")  is the number of the new subintervals. 

RESULTS AND DISCUSSION 

The accuracy of the Galerkin method with B-spline test functions has been discussed else- 
where.' ' * 1 2  In particular, in Reference 12 we investigated the effect of (i) the number of splines N in 
the expansion (12), (ii) the grading of the mesh and (iii) the positioning of the far boundary z,. Here 
we only detail the use of the adaptive mesh generation scheme. 

The first solution, when employing adaptive mesh grading, is obtained on a uniform partition. 
For s = 0 and a =  2, solution for branch I on a uniform partition with N = 63 and z, = 15 yields 
F,,, = 0.0280296 for maximum dimensionless radial velocity, as shown in the first row of Table I. 
Results for n = 1 in equation (24) are displayed in the row with iteration no. 1 of the same table. 
Here I E (  is the norm of the residue of the non-linear equations. The residues R ,  and R, ,  on the other 
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R ,  = 

R2 = 

Table I. Iteration on breakpoint distribution (branch I, s = 0, CL = 2, z, = 15, N = 63) 

H”’(0) - G‘’(0) - 4 H(H”’ - GZ)dz , J: (25) 
H”(0)Gr(O) + 3s3 - S’ + 4 - 4 HH”G’d2 . 1: I 

Uniform mesh 0.280296 x lo-’ 0.127481 x lo-’’ 0.678754 x lo-* 0.731081 x lo-’ 
1 0.296251 x lo-’ 0.259244 x lo-’ 0667045 x lo-’ 0105790 x lo-’ 
2 0.296042 x lo-’ 0.370950 x lo-’ 0.616390 x lo-’ 0688415 x 
3 0.296099 x lo-’ 0.420485 x lo-’ 0.140154 x lo-’ 0.132959 x lo-’ 
4 0.296056 x lo-’ 0457967 x lo-’’ 0.467392 x lo-’ 0.189926 x lo-’ 
5 0.296171 x lo-’  0.203562 x lo-’ 0.576451 x lo-’ 0.204999 x lo-’ 

Stuart3 0.0295 - - - 

o=o. 

. o  0.5 
z - 

0 

Figure 1. Dimensionless radial velocity of symmetric flow. Branch I at s = 0 
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Figure 2. Dimensionless azimuthal velocity of symmetric flow. Branch I at s = 0 

0 

0 

Figure 3. Dimensionless axial velocity of symmetric flow. Branch I at s = 0 
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Figure 4. Dimensionless radial velocity of symmetric flow. Branch I1 at s = 0 
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Figure 5. Dimensionless aximuthal velocity of symmetrric flow. Branch I1 at s = 0 
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Figure 6. Dimensionless axial velocity of symmetric flow. Branch I 1  at s = 0 
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Figure 7. Dimensionless radial velocity of symmetric flow. Branch I at s = 0 
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Figure 8. Dimensionless aximuthal velocity of symmetric flow. Branch I at s = 0 
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0 

solution for tl = 0 and s = 0, other branch I1 solutions for s = 0, tl > 0 were reached via continuation 
in a. By continuation, say in s, we mean the process whereby the initial values in the Newton 
iteration for the solution of the non-linear equations (18) at s + As are supplied by the solution of 
(1 8) that was obtained at s. When continuing the solution in s and upon reaching a branch point, as 
manifested by ds/dH, = 0, we redefine the non-linear algebraic system (18) by regarding s as the 
unknown. The solution is then continued in H, for a short distance. 

Figures 4-6 contain branch I1 solutions at  the parameter values s = 0 and M: = 0,1,1.15. We were 
unable to obtain convergence for Newton’s method of(18) for CI > 1.154. Note that these solutions 
show surprisingly strong boundary layer structure as tl increases. 

Figures 7- 12 display non-dimensional velocity profiles for negative suction, i.e. blowing. Branch 
I solutions are shown in the first three of these Figures; these Figures show a thickening of the 
boundary layer with increasing blowing velocity. For small to moderate blowing the second 
branch also exists, at least at zero fluid rotation at infinity. We were unable to obtain the second 
branch for M: < - 0.82. For - 0.82 d tl d 0 the velocity profiles are displayed in Figures 10-12. 

Figure 13 displays the solution of equations ( 1  8 a, b) on the {s, H m }  plane. The curve marked 
t l = O ,  i.e. flow with zero suction, was already obtained by Lentini and Keller.8 This solution, 
proceeding to the left from the point (0, -04422) turns back on itself, with first branching 
occurring at s = - 0.16054. The solution curve cuts the s = 0 axis at )H, = - 0.630275 when 
M: = 1, and first branching occurs at s = - 0257795. For s > - 0.16 the solutions for tl = 0 and CI = 1 
approach one another, as shown in Figure 13. becoming almost identical for positive rotation at 
infinity, s > 0. Second branching of the solution occurs at s = 0.07452 when M: = 0 and at s = 0.075 
when a =  1.  

Starting from the point where the second branch of the tl = I curve intersects the s = 0 axis, we 
continued the solution in M: to M: > 1 in order to locate the second branch of the solution for higher 
values of the suction velocity. The furthest we were able to proceed with this scheme was tl = 1 . 1  54; 
our algorithm would not converge for values of tl exceeding 1.154. We first reasoned that there 
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Figure 9. Dimensionless axial velocity of symmetric flow. Branch I at s = 0 
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Figure 10. Dimensionless radial velocity of symmetric flow. Branch I1 at  s = 0 
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Z 
Figure 11. Dimensionless aximuthal velocity of symmetric flow. Branch I1 at s = 0 
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Figure 12. Dimensionless axial velocity of symmetric flow. Branch 11 at s = 0 
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Figure 13. Axial flow at infinity: - $ H ,  as  a function of s = w,/w 
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Figure 14. Symmetric flow with suction, a = 1, at the first branching point, s = - 0.257795 



ROTATING DISK WITH UNIFORM SUCTION 189 

0 

Figure 15. Symmetric flow with suction, a = 1, at the second branching point, s = 0.0750 

existed a point of singularity in the neighbourhood of a =  1.154. Eventually, we performed 
calculations with ct = 1.5, 1.8 and 2.0 on the first branch, obtaining the s = 0 point in each case by 
continuation in ct from branch I along the s = 0 axis. The results of this effort are shown in 
Figure 13. With a 2 1.5 the solutions curves do not double back in our computations but become, 
instead, asymptotic to the s < 0 axis. Such behaviour of the solutions would explain the difficulty 
experienced earlier, when trying to locate the second branch of solution with ct large. 

First branching occurs at s = - 0.257795 when ct = 1. Figure 14 displays the von Karman 
solution at this value of s; here branches I and I1 coincide. To follow the evolution of the solution 
along the branch line we compare the branch I, ct = 1 curves of Figures 1-3, obtained at s = 0, with 
the curves in Figure 14, valid for s = 0.257795 with branches I and I1 coinciding, with the branch I1 

Table 11. Asymmetric flow, branch I: uniform streaming at infinity, s = 0 and uniform suction, c( = 1 

Z 

0.0 
0.103026 
0.206746 
0.3043 15 
0.398223 
0.48391 7 
0.627978 
0.707 126 
0.828308 
0.914154 
1 .o 

F 

0.0 
0.408676 x lo- '  
0.665270 x 
0.107114 x 
0.181897 x 
0.359297 x 
0231266 x 
0.482798 x 
0.178814 x lo-' 

- 0.198682 x 
0.0 

G 

1 .o 
0.147543 
0.207746 x lo - '  
0.328343 x 
0.556140 x 
0.110025 x 
0.721715 x 
0.161002 x 
0.148244 x 
0.199061 x 

-0.198033 x lo-' 

- i H  
0.5 
0.594900 
0.624935 
0.629425 
0.630130 
0.630245 
0.630270 
0.630275 
0.630275 
0.630275 
0.630275 

f 
0.0 
0.134454 
0.266920 
0.388877 
0.501 590 
0.595378 
0697062 
0.672267 
0.570602 
0.809 5 70 
1 .o 

9 

0.0 
- 0.306874 x 10- ' 
-0,369101 x lo - '  
-0,338102 x 10-I 
-0,288417 x lo - '  
-0,239350 x lo - '  
-0.156302 x lo - '  
-0.111890 x l o - '  
- 0.492604 x 10- 
- 0.145147 x lo-' 

0.0 
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0.0 0.5 1.0 
z 

Figure 16. Branch I solution at s = 0, a = 1, and C = 1 

- 

Y Y 

Figure 17. Branch I locus of stagnation points u = u = 0: s = 0, a = I and C = I 
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Figure 18. Branch I locus of stagnation points u = u = 0; s = - 0.257795, ct = I and C = I 

curves of Figures 4-6 at a =  1, and with the curves of Figure 15. The second branching occurs at 
s = 0.0750. Branches I1 and 111 coincide at this value of the parameter s; the corresponding von 
Karman solution is shown in Figure 15. The solutions in this Figure show exceptionally well 
developed boundary layer structure. 

Branch I of the complete asymmetric solution of s = 0 and CI = 1 is given in Table 11. We note here 
that the solution in Table I1 was obtained on a partition containing 61 internal breakpoints, 
unequally spaced in accordance with our adaptive mesh generation scheme. Of these we picked out 
nine breakpoints lying closest to equal spacing and displayed them in Table 11. The functions { f ( F ) ,  
g(5) } are displayed in Figure 16. The condition f '  -+ 0 as z -+ co is satisfied by the solution, but is not 
discernible on the Figure owing to the contracted horizontal scale. The complete velocity field may 
now be constructed according to equation (2). This velocity field possesses in each Z = constant 
plane a point, called here the 'stagnation point', where u = u = 0. Figure 17 is an isometric plot of 

Table 111. Asymmetric flow, branch 11: uniform streaming at  infinity, s = 0, and uniform suction 

Z F G - 4 H  s 9 

0.0 
0.104703 
0.200354 
0.302749 
0.404 3 3 2 
0.499226 
0550247 
0.624436 
0.750941 
0.87547 1 
1 .o 

00 

0.1 I6450 
0.119453 x lo - '  
0.790880 x 
0.604898 x 
0.150308 x 
0.187047 x 
0.162671 x 
0.335276 x lo-' 
0.129143 x lo-'  

-0.331083 x lo- '  
1 .o 0.5 

- 0.428671 - 0.761455 
-0.96887 x lo- '  -0.111154 
-0.642388 x 0.198644 
-0.410709 x 0.223871 
- 0.314967 x 0.225492 
- 0.793594 x 0.225592 

0.816499 x 0.225627 
0.414161 x 0.225627 
0.308187 x lo-'  0.225647 

- 0.106384 x 10- 0'225622 

0.0 
-0,367073 x lo- '  
-0,251314 x lo- '  

0 141 700 
0.301567 
0.439487 
0.504089 
0.563967 
0.566923 
0808808 
1 -0 

0.0 

0.1 13596 
0,149863 
0.1 30573 
0,106747 
0.936788 x lo- '  
0.747142 x lo- '  
0.427976 x lo- '  
0.135035 x lo - '  
0.0 

-0.140755 x lo- '  
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.o 

0 0  0.5 1.0 - 
Z 

Figure 20. Solution at the first branching point; s = - 0.257795, a = I and C = 1 
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0 

Figure 21. Solution at the second branching point; s = 00750, a = 1 and C = 1 

I = 0.0 

Figure 22. Dimensionless radial velocity I = u/x 'w;  s = 0, c( = 1, C = 1 and 0 = 4 4  
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, 
0 0 5  

7 
Figure 23. Dimensionless aximuthal velocity 17 = u / x ’ o ;  s = 0, a: = 1, C = 1 and 0 = n/4 

0 0.5 
2 
- 

Figure 24. Dimensionless radial velocity ti = u / x ’ o ;  s = 0, a: = I ,  C = 1 and r = 1 
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the locus of r, the stagnation points for the solution in Table 11. These are given by 

f ( z )  sin 6 - q(z)  cos 8 
F(z)  

r =  

The locus of stagnation points for the solution at the first branching point, s = - 0.16054, is 
shown in Figure 18. 

Numerical values at a =  1 for branch I1 of the asymmetric solution are given in Table 111. The 
corresponding curves { f ( z ) ,  g ( z ) }  are shown plotted in Figure 19. There is no discernible boundary 
layer structure here. Figures 20 and 21 show f ( z )  and g(z)  at the first, s = - 0.257795, and at the 
second, s = 0.075, branching points, respectively. 

Figure 22 displays the dimensionless radial velocity U = u/xlm for s = 0, CI = 1 in various radial 
positions along the 6 = 4 4  line. Moving inwards from infinity, where the flow is asymptotically the 
von Karman swirling flow in terms of non-dimensional velocities, the outer layer of the fluid 
acquires an inward radial velocity. Its azimuthal velocity becomes opposite to the rotation of the 
disk, as indicated in Figure 23; this Figure shows the dimensionless azimuthal velocity V = u/xlw 
for various positions along the line 8 = 71/4. 

Figures 24 and 25 display the flow development at s = 0, CI = 1 encountered by an observer 
moving along the r = 1 circle from 8 = 0 in the increasing 6 direction. For small 6 the outer layer 
seems to possess only axial velocity and an azimuthal velocity that opposes disk rotation 
(Figure 3). Moving in the direction of 6 increasing, we witness the outerlayer acquire an inward 
radial velocity and an azimuthal velocity that is in the sense of disk rotation. 

I ,  

0.0 0.5 
z - 

1 .  0 

Figure 25. Dimensionless aximuthal velocity V = v/x'w; s = 0, GI = I ,  C = I and I' = 1 
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CONCLUSIONS 

We have, in this paper, calculated a set of previously unknown solutions to the Navier-Stokes 
equations. A subset of these solutions, obtained with s = 0 and C # 0, corresponds to the flow 
obtained by placing a rotating disk with uniform suction on the disk into an otherwise uniformly 
streaming body of fluid. 

The solutions obtained here depend on, and are continuous in, an arbitrary parameter C ,  the 
velocity of streaming at infinity. For zero value of the parameter our asymmetric flow degenerates 
into the classical von Karman solution. Thus the classical solution is never isolated when 
considered within the scope of the full Navier-Stokes equations; there are asymmetric solutions in 
every neighbourhood of the von Karman solution. 

The von Karman problem itself exhibits a multiplicity of solutions at zero suction. This also 
ho!ds true at small, non-zero absolute values of the suction parameter, but for ci < - 0.82 and for 
ci > 1.154 we were unable to locate a second solution. 

We also conclude that Galerkin’s method with B-spline test functions provides an excellent 
numerical strategy for non-linear flow problems in the semi-infinite region, when it is coupled with 
adaptive mesh generation and uses proper asymptotic conditions. 
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